
J .  Fluid Mech. (1985), vol. 151, p p .  1-20 

Printed in Great Britain 

1 

On the ability of drops or bubbles to stick to 
non-horizontal surfaces of solids. 

Part 2. Small drops or bubbles having contact 
angles of arbitrary size 

By E. B. DUSSAN V. 
Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA 19104 

(Received 27 February 1984 and in revised form 17 August 1984) 

The ability of small drops or bubbles to stick to non-horizontal solid surfaces is 
analysed. The principal results consist of identifying the critical value of the volume 
of a drop (or bubble) beyond which it will dislodge and move down (or up) the surface 
of the solid, and determining the speed at which it will move. In addition, the area 
of the solid wetted by the drop (or dried by the bubble) is calculated when its volume 
is at its critical value. All of the results are expressed in terms of experimentally 
measurable material properties. The most limiting restriction on the validity of the 
results is the assumption that the value of the contact angle hysteresis is small. 

1. Introduction 
This represents an extension of the work presented in Dussan V. & Chow (1983), 

and thus it is entitled Part 2. Dussan V. & Chow limited their investigation to drops 
or bubbles? having shapes consistent with the small-slope approximation. Hence their 
results can only be used with material systems possessing small contact angles. This 
greatly limits the usefulness of their results. The objective of the present study is to 
extend their work to a case of practical importance, that of small drops with con- 
tact angles of arbitrary size. A significant number of the applications cited in $ 1  of 
Dussan V. & Chow fall into this category. 

Specifically, Dussan V. & Chow were concerned with determining the size and shape 
of drops in their critical configuration. This they defined to be the largest drop that 
could stick to a solid surface inclined at a given angle. Also, they were concerned with 
predicting the speed at which drops roll down surfaces when either the angle of 
inclination of the solid or the volume of the drops slightly exceed their critical values. 
The key to their analysis was realizing that the contact line must contain straight-line 
segments (see figure 1). This is consistent with the experimental observations of 
Bikerman (1950) and Furmidge (1962). It is of interest to note that the boundary-value 
problems generated by the above contain boundary conditions of the mixed kind. 
That is to say, along the straight-line segments of the contact line, the local values 
of the contact angle are not known a priori; while, along the remainder of the contact 
line, the variation in value of the contact angle is given, however, the location of the 
contact line is part of the solution. The problem is further complicated by'the fact 
that the locations of the ends of the straight-line segments are also part of the 
solution. 

t For convenience, the material bodies of interest will henceforth be referred to rt8 drops. 
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FIGURE 1. The general shape of the contact line is illustrated. The unit vector ipoints in the direction 
down the plate. Along both sides of the drop the contact line has straight-line segments. 
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FIQURE 2. The value of the contact angle, which depends upon the speed U of the contact line, 
is assumed to have the form given in (a). The values of the slopes of the curve for U > 0 and U < 0 
are 1 / ~ ~  and 1 / ~ =  respectively. The speed of the contact line is UD*m, where U, denotes the 
velocity of the drop, and m is a unit vector parallel to the solid surface, perpendicular to the local 
tangent vector to the contact line, and pointing away from the drop; see (b). 

The central aspect of their model consisted of accounting for the mechanism by 
which the solid surface affects the drops. This was assumed to occur through the 
contact angle 8. The specific model that they used and which will be used in this 
study is illustrated in figure 2. It contains contact angle hysteresis, a characteristic 
found in many material systems. This refers to the fact that the contact line will not 
move when the contact angle lies within the interval [OR, S,]. The two limiting static 
angles 8, and 8, are often referred to as the advancing and receding contact angles 
respectively. The model contains the simplifying feature in that the values of dO/dU 
for U over the range ( -  o 0 , O )  and (0, + a), i.e. for both negative and positive 
contact line speeds, are assumed to be constant, although not necessarily equal. Their 
values will be denoted by 1 / ~ ,  and l / ~ * ,  respectively. The values of all four 
parameters 8,, 8,, K~ and K~ must be experimentally determined. 

The most direct way of differentiating the present study from that of Dussan V. 
& Chow is by identifying the range of validity of the relevant dimensionless groups. 
Both investigate the regular limits as both the Reynolds and capillary numberst 

t The definitions of the various dimensionless groups appear in 52.1. 
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FIQURE 3. The regions of validity in parameter space of the two analyses are roughly indicated. 
A point in this space, using cylindrical coordinates, is given by (Bd, 7,  eA). The semi-infinite 
rectangular solid denotes the region of validity for the analysis of Dussan V. & Chow. The semi- 
infinite quarter of a cylinder represents the region of validity for the present study. They both 
overlap near the origin. 

approach zero. Both are valid for arbitrary values of KA/KR, and assume that only 
a small amount of hysteresis is present. This latter assumption gives rise to an 
expansion in Dussan V. & Chow in terms of (8, - @,)/@A, which they found to have 
a singular limit as its value approaches zero. A significant portion of their pre- 
sentation was devoted to determining the nature of this limit. In the present study 
C O ~ ~ ~ - C O S ~ ,  appears as the natural small parameter. However, this change in 
parameter doesn't give rise to any significant change in the nature of the singularity, 
at  least to lowest order. The chief differences between the two studies occur in the 
handling of the remaining three parameters : @A, the Bond number Bd, and the angle 
of inclination y of the surface of the solid with the horizontal. Dussan V. & Chow 
solve the lubrication equations which they found governs the lowest-order mode in 
an expansion in 8, as it approaches zero. This, of course, is not done in the present 
study. They also introduce the variables T and G, defined as Bd sin2 8, cosy and 
(Bd sin2 8, sin y p ,  respectively. Their results are valid for arbitrary values of T 
and for small values of G. The present study is restricted to small values of Bd. An 
illustration of the regions of validity of the two studies is given in figure 3. 

The organization of the present study follows that of Dussan V. & Chow. In 52 
the relevant dimensionless group are dehed,  and expansions are performed. The 
case of a drop rolling down a surface with 8, = 8, is solved in Q 3. The size and shape 
of drops in their critical configuration is determined in 54. The results of these latter 
two sections are combined in $5 to describe a drop rolling down a surface in which 
8, + 8,, along with a general discussion. 
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2. Formulation 
2.1. Scaling and identification of boundary-value problem 

The scales for (z, y, z )  are given by a,. This denotes the radius of a spherical cap 
having the same volume as the drop and forming an angle of 8, with the surface 
of the solid. Its explicit definition is given by (2.13). The velocity u is scaled with K ~ .  

Pressure p is scaled with alas, where a is the surface tension. 
The Navier-Stokes and continuity equations in dimensionless form are 

CaReu~Vu=-VP+CaV2u-kBBdcosy+ iBds iny  and V * u = O  

where the Reynolds number Re = p A a , / p ,  the capillary number C, = KAp/a ,  and 
the Bond number, B, = pgai/a. Although the same symbol is used here for the Bond 
number as in Dussan V. & Chow, in fact they are not the same. Each is based upon 
a different lengthscale. Their relationship is given by a = a, sin 8,, where a is the 
lengthscale appearing in Dussan V. & Chow. 

The kinematic and dynamic boundary conditions at the free-surface are 

1 
u*VII R-u.2  = 0 and -P+Can-[Vu+VuT]*n = -, 

R, 

where r = R(6,d) denotes the location of the free-surface parametrized in terms of 
the spherical coordinates ( r ,  6 ,  4) ; 

A A  A 

with r,  8 and 4 denoting unit vectors along the three coordinate curves; and R, 
denotes the mean radius of curvature of the free surface, given by 

L =  RM [{&Y+R2sin26}{(g-R)R2sin6-2R 

+ { G Y + R 2 }  {r$-R sin2e R2sin6-2R(%) aR sin6+R2-sin2B aR cos6] 
a6 

The coordinate system is oriented so that ;(in, 0) and ;(in, in) lie tangent to the solid 
surface and equal i and j ,  respectively, the vector i pointing in the direction of 
maximum descent. The solid surface is located a t  z = cos 8,, where the unit vector 
k is perpendicular to the surface pointing from the solid to the drop (see figure 4). 

The kinematic and no-slip boundary conditions at the surface of the solid are 
given by 

where Up denotes the velocity of the plate as viewed from a frame of reference a t  
rest with respect to the centre of mass of the drop. Since we shall only be interested 
in the limit as both the Reynolds and capillary numbers approach zero, the analysis 
will be unaffected by the singularity arising from the no-slip boundary condition at 
the moving contact line. 

u = up, 
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FIQURE 4. A point on the surface of the drop is given by (R(8, #), 8, #) in the spherical coordinate 
system. The origin is located below the solid surface when 8, c in, aa illustrated. The solid surface 
is located at z = cos8,. The vector i points in the direction down the inclined surface, i.e. the 

g = g sin yi-g cos yk. gravity vector g is given by 

The boundary condition at  the contact line is 

contact line is a straight-line 

where the values of $A, $R and Up must be determined. A detailed explanation of 
this boundary condition appears in $2 of Dussan V. & Chow. The local value of the 
contact angle and the vector m can be calculated using the formulas 

< $ < 
segment (::-& < $ < 2x-$A, 

cos8 = n*k (2.3) 

(2.4) 

i3R and 
{P sinZf3- R - sin8 cost9 ae 

aR R2 sin2 8- R - sin0 ae 
m =  

where 

~R2sin8-BR-sin8-#R- A aR A aR 
ae ad - r  _ -  

aR n =  
{B4 sin2B+B2(z)  s i n 2 8 + R z G Y r *  

The vector n denotes the outward unit normal to the free surface. The location of 
the contact line will be given by (R(B,,, $), OcL, $), where the function eCL($) is defined 
as the solution to the equation 

case, = R(8,,, $1 case,, 
for all values of $. 
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V .  This is given by 
The only other constraint imposed is the specification of the volume of the drop 

1 = { loe'" loR re sin 0 dr do-i c0s3 8, tan2 BCL} d#. 
a: 

2.2. Expansion of parameters 
We will only seek solutions valid in the limit as both Re and C, approach zero. This 
simplifies the mathematics quite a bit. The Navier-Stokes equation reduces to its 
static form 

0 = -vp+ Bd( - k cosy + i sin y ) ,  

and the dynamic boundary condition at  the free surface becomes 

1 - p  = -. 
RM 

(2.9) 

The boundary condition (2.2) at the contact line and the volume constraint (2.7) enter 
at this order without any obvious simplifications. No subscripts have been introduced 
at this point, since we will not be concerned with higher-order modes. 

It is important to realize that at least four scales for the velocity have been 
introduced thus far: p/pa,, v /p ,  K~ and KA.  The ratio between the first and last scales 
forms the Reynolds number, while the ratio between the second and last scales forms 
the capillary number. Although (2.8) and (2.9) are commonly identified with static 
fluids, this need not always be the case. For example, in the present study, motion 
will originate from the boundary condition (2.2) at the contact line. 

The solution to (2.8) and (2.9) has the following simple form: 

- B,{(R cos8-cos8,) cosy-Rsin8 siny}+A,, (2.10) 
1 _-  

RM 

where A, denotes an absolute constant to be determined. Two limiting solutions will 
be investigated. In $3  an expansion will be performed valid for small values of B, 
evaluated at cos@,-cos 8, = 0, and for 0 < y < in. The principal objective is to 
determine the dependence of the slope and speed at  which the drop rolls down the 
inclined plane on the values of KA, K~ and 8,. In  $4 a solution will be obtained, valid 
for small values of cos 8,-cos8,, for the size and shape of a drop when it is in its 
critical configuration. Again, the only restriction placed on y is that 0 < y < in. Both 
problems represent perturbations about a common base state, identified as the 
(00)-mode corresponding to B, = 0 and cos 8,- cos 8, = 0. Its solution is presented 
in $2.3. 

2.3. Solution to (00)-mode 
At the limit of Bd = 0 and cos 8, - cos 8, = 0 the pressure Po, must be an absolute 
constant. Its value will be denoted by -Asoo. This implies that the drop has a 
constant mean radius of curvature. Since the static contact angle has a unique value 
8,, the drop must have the shape of a spherical cap. I ts  radius Roo is then determined 
by the volume constraint (2.7). In  summary, we have 

and 

Po, = -A,,, = 2, 

Roo = 1 

= in( 1 - cos 8, -4 cos 8, sin2 8,). 
V - 
a: 

(2.11) 

(2.12) 

(2.13) 
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Here, (2.12) can be thought of as giving the explicit definition of the lengthscale a,, 
and (2.13) gives a means for calculating its value upon knowing the volume of the 
drop. 

3. The steady motion of a drop moving down an inclined plane with no 
contact-angle hysteresis 

3.1. Fornulation of boundary-value problem 
Any inclination of the solid surface from the horizontal will cause the drop to be in 
motion. The magnitude of the force responsible for this behaviour is given by Bd s h y .  
It will be assumed that the unknown quantities can be expanded in an asymptotic 
series valid in the limit as Bd + 0 of the form 

R 1 + Bd R1O(e, 9; y ,  e A ,  KA/KR) + 3 ( 3 . 1 ~ )  

As “ - 2 + B d A s l o ( Y , e A , K A / K R ) + . . .  9 ( 3 . l b )  

up Bd uPIO(y, @A, KA/KR) + > ( 3 . 1 ~ )  

where we have used the results of 82.3. Substituting the above into (2.10) and making 
use of (2 .1)  gives, to  O(Bd) &8 Bd+o, 

1 a2R,, c o s e a ~ , ,  
ae2 SUM a p  sine ae a8R,, +2RIo+--  +-- 

= (cose-cos8,) cosy-sine cos# siny+A,,,. (3 .2)  

The expansion of the boundary condition at the contact line is a bit more elaborate. 

(3 .3)  

valid in the limit as &+o. Substituting ( 3 . l a )  and (3 .3)  into (2 .6)  gives, to O(&) 

We begin by assuming an asymptotic expansion for ecL of the form 

ecL @A + Bd ecLIO(# ; 7, 8A, KA/KR) + ... 

RIO(eA, 4) cos @A 

sin 8, %LlO = (3 .4)  

The expansion of the boundary condition (2 .2)  at the contact line follows directly 
upon substituting (3.1 a, c )  and (3 .3)  into (2 .3) ,  (2 .4) ,  and (2 .5) ,  and making use of (3 .4) .  
One obtains, to O(&) as Bd+O, 

where 

K ( # )  KA 
( $ < < < i n ,  

and Up,, = Uploi. 
= q5R = in because 8, = OR, and that the origin of the 

coordinate system is placed so that the advancing and receding portions of the 
contact line corresponds to -in < g5 < in and in < 4 < in respectively. 

We have assumed that 

The expansion of the volume constraint (2 .7)  gives 
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3.2. Solution 
It is more convenient to express the above-specified boundary-value problem in terms 
of a new independent variable 8, given by cost?, and to introduce a new dependent 
variable R, defined by 

RE Rlo-- [ l - s ln( l+s) ]  cosy+ (1-s2)t1n(1+s)+s 
3 ‘I 

where 5A = cos 8,. The boundary-value problem defmed by (3.2) and (3.5) takes on 
the form 

-&&oS,+$?i COSY- Uplo[1-5i$K($) COS$. (3.9) 

It is easily established that the general solution to (3.8) is given by 

m 1-8 t n  
R=  EoPl(s)+EIP:(s) COS$+ E, [l+s] - p j ” , - n ) ( s )  cosn$, (3.10) 

12-2 

where PI, Pi and pi”, -n)  (Legendre, associated Legendre and Jacobi polynomials) are 
s, - (1 - s2)! and s + n respectively (Abramowitz & Stegun 1964). We have used the 
fact that Ris  an even function of $. Substituting (3.10) into the boundary condition 
(3.9), along with the Fourier expansion of K ( $ )  cos$, 

gives the following results : 

\ o  (n = 3,5, ...). 
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Note that the above expression for Up,, can be simplified by making use of (2.13) to 
give 

-22siny 
UP10 = (3.11) 

The constants El and Aslo are yet to be determined. 
The location of the origin of the coordinate system has not been entirely specified 

in the solution. Its position along the x-axis must be fixed. In  order to do this i t  is 
convenient to express the location of the contact line using cylindrical coordinates 
(rp, q5, cos 8,), where rp = R(8,,, q5) sinecL. Substituting (3 . la) ,  (3.3) and (3.4) into 
the expression for rp gives 

+... , rp = sin 8, + B, R10(8R) 9) 
sin 8, 

valid in the limit as B,+O. Requiring the advancing and receding portions of the 
contact line to be located at -+x < q5 < ?jn and !ix < q5 < respectively necessitates 
that d(rP sinq5)/dq5 = 0 at q5 = &in. This directly implies that dRlo/dq5 = 0 at 8 = 8, 
and q5 = *ix, resulting in 

. 

1. El = H [ l n ( l + s , ) + -  sin y 
1 +8A 

The remaining constant A,,, is determined by substituting (3.7) and (3.10) into the 
volume constraint (3.6). This gives 

4. The critical static configuration of a drop on an inclined plane with 
contactangle hysteresis 

4.1. Formulation of boundary-value problem 
The following physical problems are mathematically equivalent : determining the 
largest angle of inclination of the solid for which the drop will not roll down its surface ; 
and determining the volume of the largest drop that will stick to a surface inclined 
at a specified angle. This gives rise to the following boundary-value problem: 

1 
(4.1) -- - Bdc{ (R, cos 8 - cos 8,) cos y - B, sin 8 sin y }  +A,, , 

subject to the volume constraint (2.7). Equation (4.1) is just (2.10) with the subscript 
c appearing on the unknown parameters and dependent variable. Equation (4.2) is 
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(4.3) 

equivalent to (2.2) upon setting Up zz 0. The object is to determine the functional 
relationships 

I Rc = Rc(e, 4; @A, y ) ,  

= Asc(@A, € 9  y ) ,  

9 A c  = # A C ( @ A > ~ -  y ) ,  

9 ~ c  = + R ~ ( @ A ,  € 3  Y)? 

Bdc = Bdc('A,E, y )?  

where E = cos 8, - cos 8,. 
A solution will be obtained valid in the limit E + O .  Since this represents a singular 

limit (Dussan V. & Chow), the drop will be divided into inner and outer regions 
corresponding to the portions surrounding the two straight-line segments of the 
contact line and the rest of the drop respectively. The solution in the outer region 
is presented in $4.2, and that in the inner region is presented in $4.3. They are 
matched in $4.4. 

valid in the limit s+O. Note that the scales appropriate for this region are those 
introduced in $2.1. Substituting the above expansions into (4.1), (4.2), and (2.7), and 
using the relationships (2.1), (2.3), (2.4), (2.5), and (2.6) gives to O(E)  as e+O the 
following boundary-value problem : 

1 aw,, CoseaR,, + 2RC1 +- - +-- aaR,, 
ae2 sin2e sm0 30 

= Bd,,[(cos 0- cos 63,) cosy - sin 8 sin y cos 91 +Asc1, (4.5) 

and s,"* R,, sin 8 d0 d# = 0, (4.7) 

where the details of the expansions of the boundary condition at the contact line and 
the volume constraint are similar to that given in $ 3.1. 

As in $3.2, it is convenient to seek a solution in terms of the independent variable 
s, given by cose, and a new dependent variable I?, defined by 

l? = R,,--:B,cl{[l-sln(l+s)] cosy+ ( l - s2) i ln( l+s)+s  - sin y cos 4 

-iAscl +iBdcl 'A 'OS 7. 

(t 5 
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The boundary-value problem becomes 

[( 1 -s2) $1 + 2 t i + m  1 @ a 2  = 0, 
as 

0 ( - $ G < $ < x ) ,  
-&4,c1 SA + $Bdc181 cosy + 

The general solution to the above is 

(4.9) 
l-s W 

Substituting (4.9) into (4.8) and (4.7), along with the Fourier-series representation 

1 OD 2(-1)n 0 ( -+x<$<$) ,  

2 ,,oxW+1) 
--+ z 

gives 

and 

6 [' +sA]i, 

Bdcl = x(8A+2)(1-sA) siny 1-8, 

10 (n = 4,6, ...), 

(4.10) 

The remaining unknown constant D, will be determined upon matching the inner and 
outer solutions. 

It is of interest to note that the series appearing in (4.9) can be summed, resulting 
in the following analytic form: 

a -2Stan-1 252t cos$ 
2x { 73- ( 1 - - 5 1 )  

ti = Dos-D,(1-s2)i cos$--  

+(38+1) cos$+ cos$ ln(1+20 c0s2q5+Q2? 1 
sin$ tan-' 1 (4.11) 

where 
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CL is very similar to the one solved above. It can easily be shown that 
The boundary-value problem to lowest order containing the terms with subscript 

and 

- a [ (1 -s2) s ] + 2 R c L  +- 1 - a2RCL 
as as 1 - 82 a$2 

R,, ds d$ = 0. 6 lA 
The solution is given by BdcL = 0, AscL = 0 and 

R,, = - F sin 0 cos $, 

where the constant F is determined upon matching the inner and outer solutions. 

4.3. Inner region 

In the outer region the primary difference between the boundary-value problem of 
the present study and that of Dussan V. & Chow lies in the coordinate systems. The 
former uses spherical coordinates while the latter uses polar coordinates. This 
difference disappears in the inner region where i t  is appropriate in both studies to 
use a local rectangular-Cartesian coordinate system. For this reason extensive use can 
be made of the results presented in Dussan V. & Chow. 

The inner regions are located in the vicinity of (1 ,  @,, kin), using spherical 
coordinates. They contain the straight-line segments of the contact line. Attention 
will be restricted to an analysis of the inner region near the point (1,  @,,in). As in 
Dussan V. & Chow, a local rectangular Cartesian coordinate system is introduced with 
the origin a t  (1 ,  @,,in) (see figure 5 ) .  Here the coordinates (Z,, y,, Z,) are given by 

1 
(2,, y,, 5,) = - (2 ,  y, 2- cos 8,) 

E 

where (Z, y, z) are scaled with a,. The shape of the free surface and location of the 
contact line will be described by 5, = hec(Zc, y,; @,, 8, y )  and y, = K c ( Z , ;  @,, 8, y ) ,  
respectively. The locations of the ends of the straight-line segments of the contact 
line are denoted by Z, = +_ L,, where the value of L, is to be determined. 

Asymptotic expansions are assumed of the form 

- h,00(2,? y e ;  @A, 7) +Eh,cl(Ze, y e ;  @A, y)+ * * .  (4.12) 

and zc ~ o o ( Q A , y ) + E ~ c 1 ( 5 , ;  Q A , y ) + * * *  3 (4.13) 

valid in the limit s+O. The above implies that a domain perturbation will be 
performed about y, = zoo, a different location from that used in the expansions in 
the outer region. The leading-order terms in the asymptotic expansions for A,, and 
B,, have already been determined in 84.2. 

Substituting (4.12) and (4.13) into (4.1) and (4.2) gives rise to an infinite set of 
boundary-value problems. It is straightforward to show that the solution to the 
lowest-order mode is hsOO = (ye- Roo) tanQ,, where the constant KO, must be 
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Contact 
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sine,  + 
E 

FIUURE 5. A local coordinate system scaled with a, is constructed 
with origin at (1,8,, in) in spherical coordinates. 

determined by matching the inner and outer solutions. The boundary -value problem 
for the next-order mode is 

0 

a% (ze, yeooj - 

(Z, < - L, I cos 8, I ) , %I = [  
(Z, > L, I cos 8, I ) 

C O S ~  8, tan 8, 

and 

where gE = Ze I cos 8, I , and wc2 appears in the asymptotic expansion for the variable 
denoting the width of the drop, w,, 

hEcl(ZE, KO,) = ? j~ ,~  tan 8, ( - L, I cos 8, I < F, < L, I cos 8, I 1, 

W, 2 sin8,-2sK(O; ~ , , s , Y )  - ~+~W,.+E~W,,+ ..., 
valid in the limit as s+O. This implies that 

wcl = -2 K , I J ( ~ A ,  7 )  and wc2 = -2 Ecl(0; @A, Y). 

It is worth noting that the interface is located above the solid in the region ije 8 0 
for 8, 5 in. This necessitates treating the two cases separately. The analysis that 
follows applies specifically to the case when 8, < in. The analysis appropriate when 
8, > in differs from the above only in the sign of various terms. 
The above-specified boundary-value problem is mathematically equivalent to that 

appearing in Dussan V. t Chow upon making the following correspondence of terms 

(hdcl, A,,,, woc2) - (h,,, sin 8, cos2 8,, A,,, tan 8,, wce sin2 8, cos @,). 

Hence the solution is given by 

- 
-- LE cosh Y sin X (In EE -2 +In [cosh2 Y sin2 X+ sinh2 Y cos2 a) 

2rc 

+ C, Y + ?jwC2 tan2 8, C O S ~  8, - +E: A,,, tan 8, 
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+- 4 [-+-ln2++lnE:]e-y sinX+E, sinh Y sinX 
7c 

+ @ A,,, e-2y tan 8, cos 2X + 26, sinh 2 Y cos 2X 

-ePy sin X+  2 cos X sinh Y tan-' 

+2  sinX cosh Y ln(1-2ee-2Y c0s2X+e-'~)i] 

n 00 

+ 2E2,,,sinh(2k+l) Ysin(2k+l)X , 
k-1 

(4.14) 

where 

E, = L, cos @,, Z, = E, cosh Y sin X and ij, = KO, + E, sinh Y cos X. 

The constants E, and {Ek ; k = 0, 1 , . . .} are yet to be determined. 
Three additional constraints must be imposed on (4.14) in order for it to be an 

acceptable solution: (i) the value of the contact angle along the straight-line segments 
of the contact line must lie within the interval [8,, @A] ; (ii) the tangent of the contact 
line must be continuous a t  the endpoinh of the straight-line segments; and (iii) the 
largest and smallest values of i j  corresponding to points along the contact line must 
occur along the straight-line segments. 

It can easily be shown that the first constraint implies 

1 
- 1  < E, tan@, cosX--(X++n) < O 

x 

for -;7c < X < in. This, in turn, implies that 

(4.15) 

The second constraint requires that 

This can easily be evaluated using the expression 

dK,I - C O S ~  8, tan2 8 - 
A dE, 

+E, A,,, tan@, (4.16) &tan 8, C O S ~  8, d 
- - (q - @)t  (h,,' - 

along with (4.14). It can be concluded that 

Eo + +E: A,,, tan 8, - 4E, = 0 (4.17) 

and 
L, E, 

El = - ln-, 
27c 2 

Finally, it can readily be shown that the third constraint is equivalent to 

(4.18) 
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Upon differentiating (4.16) with respect to Zc, it  can be shown that this inequality 

(4.19) 

The remaining unknown constants {Ek; k = 0,1, ...}, 4, Ydo, D, and F are deter- 
mined by matching the inner and outer solutions. This is accomplished by first 
expressing the inner solution (4.12), in terms of the variables (3, j j )  and rearranging 
it as an asymptotic expansion in terms of the sequence { 1,e In e, e, . . .}. The local form 
of the outer solution h, is obtained from the expression 

implies L 
f 2 -2E0. 

x 

h, = ( l+e lne  RcL(e,$)+eRC1(O,$)+ ...) cose -~oseA,  

8 -  eo(z,g)+elneeL(~,S)+eee,(z,y)+ ... , 
where the variables (0, $), represented by 

0 - $O(z,jj)+elns$,(3,jj)+€$~(3,jj)+... , 

z = ( 1 + E In e R,,(B, $) + eR,,(B, $) + . . . ) sin 0 cos $, 

sin@,-g= ( 1 + e l n e R , , ( ~ , $ ) + e R , , ( ~ , $ ) +  ...) sinesin$. 

Equating these forms of the outer and inner solutions up to and including O(e)  as 
B + 0 gives the following : 

must satisfy the equations 

- 1  
8z2 

c2 = -cote,, { E ~ ~ + ,  = 0; k = 1,2, ...I, 

1 
x sin 8,' 

L, = 
1 

x sin 8, ' 
F =  

2 +l-ln(2nsin8,) 

KOo = cos 8, + 2 [- z(cos 8, + 2) -2 sin 8, 

ln- 
1 

+asin@, sineA x sin 8, 9 

cot y 

where the expressions for F,  L,, D ,  and Too are valid for 0 < 8, < x .  

5. Results 
The results of 953 and 4 can be combined, as demonstrated by Dussan V. t Chow, 

to describe the state of a drop, valid for the general case when 8, + 8,, rolling down 
a plane whose angle of inclination slightly exceeds its critical value. The form of the 
solution for either R, A,, $,, $R or Up can be expressed as 

d ( y ,  Bd, @A, @,, 1"> h, 4 0 + €  d c L ( e A ) + e c l ( Y ,  8,) 
KR 

+[Bd-eB~ol(Y,eA)ldlO(y, @A, 2). (5.1) 

where 9 denotes any one of the aforementioned variables. 
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FIGURE 6. A plot of (5.3), indicating the dependence on the parameters 8, and 8, of 
dimensionless volume V(pg siny/a)f of the largest drop that can stick to the solid. 

the 

The speed (in dimensional form) a t  which the drop rolls down the surface of the 
solid U ,  is given by - U,K,. Substituting (3.11) into (5.1) implies that 

1. (5.2) 
2V siny [ e -  ~ ( C O S  8, - cos 8,) (1 + cos 8,): 

UD - x(c0s 8,+ 2) (1  - cos 8,): sin y 
atx -+- sin2@, 

( K i  K i >  

According to this expression, the speed of the drop should increase without bound 
as @,+o and A, for fixed values of Bd-&dcl. However, (5.2) is only valid to o(1) 
as the relevant capillary number U ,  p / u  approaches zero. These singular limits should 
disappear upon including the lowest-order effects due to viscosity. The volume of the 
largest drop that can stick to the surface of the solid inclined at  a given angle y can 
be calculated directly by substituting (4.4) and (4.10) into (2.13), giving 

( P B ~ Y ) ~ ~ ,  (96): ( c o s ~ , - c o s ~ , ) ~ ( ~ + c o s ~ , ) ~ ( ~ - ~ c o s ~ , + ~ c o s ~ ~ , )  . (5.3) 
(cos 8, + 2)' ( 1  -cos 8 A y  
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To illustrate some implications of this expression, the variation of (pg sin y/cr)t V with 
8, for several fixed values of @A - 8, ranging between 0.1' and 10' has been plotted 
in figure 6. This form of presentation was chosen because the appearance of hysteresis, 
8, 8,, is usually associated with either surface roughness or chemical inhomo- 
geneity such as that which would be created by scratches or by dirt. Therefore the 
magnitude of the hysteresis, @,-8,, may in some sense be thought of as being an 
inverse measure of the amount of labour and expense necessary to manufacture the 
solid surface. The physical significance of the range chosen for 8, - 8, in figure 6 
is as follows. The smallest value, O . l o ,  coincides with the limit of the accuracy of the 
most sensitive devices used for measuring static contact angles. However, due to 
variations introduced by repeated measurements with different samples of seemingly 
the same surface, it is found that the reproducibility of the memurements on very 
carefully prepared surfaces is rarely less than 1'-2". On the other hand, 10' was chosen 
as the maximum value for 8, - 8, since the solution is only valid for small values 
of C O S @ , - C O S ~ ~ .  Larger values of @,-@A are quite common; in fact, it is not 
unusual to find a material system with a hysteresis as large as 150'. 

Each curve in figure 6 identifies the drop with largest volume that can stick to the 
surface for various values of 8,. The most prominent characteristic in the curves is the 
existence of a maximum occurring approximately at 8, x 65.53'+ 1.94(@, - @,), 
giving a value for (pg shy/cr)i V of about 2.64(cos @,-cos 8,):; see the dashed line 
in the figure. (The slight discrepancies between the maxima in the curves and the 
values indicated by the above relationships are probably of the same order as the 
inaccuracy of the results due to its being only the first term in an asymptotic 
solution.) Hence drops with volumes greater than that value, regardless of the value 
of @,, and for a specified amount of hysteresis, cannot stick to an inclined solid 
surface. In  general, if it  is desired to minimize the value of the largest drop that can 
stick to a surface, then the shape of the curves in figure 6 indicates that either one 
must be willing to incur 'great expense' by creating a solid surface with very small 
hysteresis, or choose a material system so that 8, takes on a relatively large value. 
Thus a solid surface with 8, - 8, = 1 .Oo will not let a drop stick to it with scaled 
volume greater than 0.0052, regardless of the identity of the liquid; while a 'less 
expensive ' surface with 8, - 8, = 10' will exhibit the same characteristic only for 
liquids with 8 A R  163'. Finally, the results presented in figure 6 make possible a 
quick, sensitive and convenient experimental technique for determining the hysteresis 
of a solid when its value happens to be small by simply requiring the measurement 
of the volume of the largest drop that can stick to its surface. 

Also of practical interest is the size of the area of the solid wetted by the drop. 
This may be important in various problems such as determining the rate of growth 
of condensing drops, or the extent to which a given amount of spray will wet a surface. 
A dimensionless form of the wetted area, Bd sin2 8,, to lowest order, is obtained by 
substituting (4.9) into (4.4) to give 

(see figure 7). It is of interest to note that Bd sina 8, is a monotonically decreasing 
function of 8, for fixed values of 8, - @,, and doesn't possess a maximum as in the 
case for (pg siny/a)! V .  When 8,< ~ T C ,  Bd sinZ 8, also can be used to determine the 
minimum number of drops required to cover a solid surface of specified size ; however, 
this is not true when 8, > in:. For this latter case a better estimate can be obtained 
directly from Bd (see figure 8). 
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The shape of the contact line can readily be calculated using the expansion 
procedure outlined at the beginning of $3, along with (5.1). The radial polar 
coordinate, scaled by a, for points on the contact line, rp, is given by 

cos d 

1, ( 5 . 6 ~ )  
(cos 8, + 2n) cos 2n# 

(479- l)z 

00 

+2  z ( - 1 y  
n-i 

FIQURE I. A plot of (5.4), indicating the dependence on the parameters y ,  8, and 
8, of the dimensionless area B, sin* 8, of the solid wetted by the largest drop. 
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FIQTJRE 8. 
e* 

A plot ofBd sin y obtained by substituting (4.10) into Bd - (coseR Bdcl. 

(5 .6d)  

The explicit forms for Too and D, appear at the end of $4.3. 
The effects of hysteresis and motion on the shape of the contact line can best be 

illustrated by examining them separately. The most obvious immediate distinguishing 
feature is that the perturbation to the circular shape created by the hysteresis is 
asymmetric with respect to the x = 0 plane, while the change in shape due to the 
motion of the drop rolling down the surface is symmetric with respect to the x = 0 
plane. The portion of Rlo that depends on $ is illustrated in figure 9. The length LD 
and width w of the drop, scaled with as, are given by 

+ i 4 1 0  - sin 8, ( 1 - 2 )  ($2 COSQA++)]. 
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8, = - (-l)'(cos 8,+2n)cos2n4 
11-1 (4n'- 1)Z 

10" 20" 30" 40' 

$ 

FIOURE 9. A plot of m (cos 8, + 2n) z (-l)n+l cos 2nq5 
n-1 (479- l ) z  

which gives that portion of the shape of the contact line resulting from the drop moving down the 
inclined plane that depends on q5; see (5.5) and (5.6). 

A measure of the relative differences in the shape of the drop for 5 2 0 as compared 
with 5 < 0 is reflected in the value of 6 defined by (rP(0) - rP(7c))/2 sin 8, : 

s Ins e 2 
6-- 

~ ( c o s  8, + 2) ( I  - cos 8,) 

3 1 1  
27c 2.11. 71 

x [( 1 + cos 8,) In (1 + cos 8,) + cos S,] - D,  sin 8, -- cos 8, --+- In 2 

Hence for very small values of e the front of the drop, i.e. the portion of the contact 
line with contact angle greater than or equal to @,, is longer than its rear. 

Probably the most useful direct extension of these calculations from a practical 
point of view would be to remove the restriction imposed by assuming that 
cos 8,- cos 8, is a small parameter. 
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